China high quality Friction Locking Bushes Tlk132, Cce4100, Drivelock13, Rck13, Bk13, Klaa, Ktr203, Kbs13 bushing press

Product Description

 Ubet Keyless Locking Devices are used in rotating machinery,  producing clamping pressure between surface of locking device and shaft to create adjustable and releasable mechanical connection,  so as to clamp gears,  pulleys and other components to a shaft without threads or keys.
 
Raw materials available in:
l   Steel C45E,
l   Steel 42CrMo4V
l   Stainless Steel AISI431,
l  Stainless Steel AISI304
 
Features:
1. Connect hubs solidly to shafts
2. Easy installation and disassembly
3. High torque transmission
4. Long lifetime and easy maintenance
5. Low notching effect
6. Reduction of wear and tear of expensive machine components
 
Ubet Machinery provides types of Keyless Locking Devices,  which are interchangeable with many European and American brands. High quality always comes the first.

Ubet Keyless Locking Device KLD-1 Medium torque, not self-centering, Medium surface pressures, No axial hub movement, flexible use, machining tolerance shaft H8, hub H8; socket head locking screw DIN912-12.9. The most popular type of all KLD Locking Device, CHINAMFG Connection; the slotted design of the double tapered rings enables relatively high mounting tolerance, The large taper angles are not self-locking and facilitate the release of the connection.

KLD-1 Interchange with Z2,BIKON 4000,BEA BK40,BONFIX CCE2000,Challenge 01,Chiaravalli RCK40,CONEX  A, Fenlock FLK200,ITALBLOCK CN210,KTR100,KINLOK LOK30,KBS40,KANA 200,MAV 2005,POGGI CAL-A,RFN7012,Ringspann RLK200,Ringblok 1120,SIT 1,SATI KLGG,TOLLOK TLK200,Tsubaki AS,TAS3571,V-Blok VK400,Walther CHINAMFG MLC 1000,Fenner Drive B-Loc B400,LoveJoy SLD1500,  FX10,OKBS40,DRIVELOCK40  

Ubet Keyless Locking Assembly KLD-2 Medium torque, self-centering, small cross section, machining tolerance shaft H8, hub H8; Socket head locking screw DIN912-12.9
Self-centering with excellent concentricity; the small outer diameter is space-saving and suitable for small wheel diameters; the spacer ring between the outer flange and the hub maintains the fitting position in the axial direction to enable exact positioning without a shaft collar; the push-off threads in the outer flanges are used for dismantling.
 
KLD-2 Interchange with Z11,BIKON 8000,BEA BK80,BONFIX CCE1000,Challenge 02,Chiaravalli RCK80,CONEX  B,7110 ECOLOC, Fenlock FLK110,GERWAH PSV2571.1,ITALBLOCK CN55,KTR250,KINLOK LOK10,KBS80,MAV 5061,POGGI CAL-B,RFN7110,Ringspann RLK110,Ringblok 1100,SIT 3,SATI KLCC,TOLLOK TLK110,Tsubaki TF,V-Blok VB800B,Walther CHINAMFG MLC3000,Fenner Drive B-Loc B800,LoveJoy SLD1900,FX20,OKBS80,DRIVELOCK80

Ubet Locking Elements KLD-3
Low torque, Medium surface pressure, Taper rings only, Low axial and radial dimensions
This clamping set is self-centering with excellent concentricity. The extremely small outer diameter is space-saving and suitable for small wheel diameters. The spacer ring between the outer flange and the hub maintains the fitting position in the axial direction to enable exact positioning without a shaft collar. The push-off threads in the outer flanges are used for dismantling.
 
  KLD-3 Interchange with Z1,BIKON 5000,BEA BK50,BONFIX CCE3000,Challenge 03 Chiaravalli RCK50,CONEX  C,Fenlock FLK300,ITALBLOCK CN31,KRT150,KINLOK LOK80,KBS50,KANA 300,MAV 3003,POGGI CAL-C,RFN8006,Ringspann RLK300,Ringblok 1060,SIT 2,SATI KLNN,TOLLOK TLK300,Tsubaki EL, ,Walther CHINAMFG MLC 2000,Fenner Drive B-Loc B112,LoveJoy SLD350, FX30,OKBS50,DRIVELOCK50
 
Ubet Mechanical Locking Device KLD-4
High torque, self-centering, medium surface pressure, machining tolerance shaft H8, hub H8; socket head Locking screw DIN912-12.9
 
KLD-4 Interchange with Z3,BIKON 7000A,BEA BK70,BONFIX CCE4000,Challenge 04,Chiaravalli RCK70,CONEX  D,7004 ECOLOC, Fenlock FLK130,GERWAH PSV2007,ITALBLOCK CN54/N,KTR200,KINLOK LOK20A,KBS70,MAV 6901,POGGI CAL-D,RFN7013.0,Ringspann RLK130,Ringblok 1300.1,SIT 5A,SATI KLDA,TOLLOK TLK130,V-Blok VK700, FX40,OKBS70,DRIVELOCK70
 
Ubet Shaft Hub Connection KLD-5
Medium torque, reduced length, medium self-centering, High surface pressure, machining tolerance shaft H8, hub H8; socket head Locking screw DIN912-12.9
Suitable for narrow, disk-shaped wheel hubs. Self-centering and self-locking in the clamping state.
 
KLD-5 Interchange with Z3B,BIKON 1003,BEA BK13,BONFIX CCE4100,Challenge 05,Chiaravalli RCK13,CONEX  DS,7003 ECOLOC, Fenlock FLK132,GERWAH PSV2006,KTR203,KBS13,KANA 201,MAV 1062,POGGI CAL-DS,RFN7013.0, Ringspann RLK132,Ringblok 1710,SIT 6,SATI KLAA,TOLLOK TLK132,TAS3003,       V-Blok VK160,Walther CHINAMFG MLC 5006,LoveJoy SLD1750, FX41, OKBS13, DRIVELOCK13.
 
Ubet Shaft Locking Device KLD-6
Medium torque, self-centering, Low surface pressure, No axial hub movement, machining tolerance shaft H8, hub H8; socket head Locking screw DIN912-12.9
 
 KLD-6 Interchange with Z13,BIKON 7000B,BEA BK71,BONFIX CCE4500,Challenge 06,Chiaravalli RCK71,CONEX  E,7007 ECOLOC, Fenlock FLK131,GERWAH PSV2007.3,ITALBLOCK CN54/S,KTR201,KINLOK LOK20B,KBS71,MAV 6902,POGGI CAL-E,RFN7013.1,Ringspann RLK131,Ringblok 1300.2,SIT 5B,SATI KLDB,TOLLOK TLK131,Tsubaki KE,V-Blok VK700.1,Walther CHINAMFG MLC5000B, FX50,OKBS71,DRIVELOCK71
 
Ubet Clamping Power Lock KLD-7
Medium torque, reduced length, High surface pressure, No axial hub movement, machining tolerance shaft H8, hub H8; socket head Locking screw DIN912-12.9; Simultaneous Connection of Chain Sprocket
 
 KLD-7 Interchange with Z8,BIKON 1006,BEA BK16,BONFIX CCE4600,Challenge 07,Chiaravalli RCK16,CONEX  ES,7006 ECOLOC,Fenlock FLK133,GERWAH PSV2006.3,ITALBLOCK CN9/4,KTR206,KBS16,KANA 201,MAV 1061,POGGI CAL-ES,RFN7013.1,Ringspann RLK133,Ringblok 1720,SATI KLAB,TOLLOK TLK133,Tsubaki AE,TAS3006,V-Blok VK130,Walther CHINAMFG MLC 5007,LoveJoy SLD1750,FX51,OKBS16,DRIVELOCK16
 
Ubet Shrink Disc KLD-14
High torque, No axial hub movement, High speed application, preferred solution for coupling hub and hollow shaft gearbox, DIN931-10.9 screw; Smart-Lock Shrink Disc, Narrow Hub Connection for sprockets, connect hollow and CHINAMFG shafts frictionally and backlash-free.
 
KLD-14 Interchange with Z7B,BEA BK19,BONFIX CCE8000,Challenge 14,Chiaravalli RCK19,CONEX  SD, Fenlock FLK603, ,KTR603,KBS19,MAV 2008,RFN4071,Ringspann RLK603,Ringblok 2200,SATI KLDD,TOLLOK TLK603, Tsubaki SL, ,Walther CHINAMFG MLC 9050,Fenner Drive B-Loc SD10,LoveJoy SLD900, FX190,OKBS19,DRIVELOCK19
 
Ubet Locking Assembly KLD-15
High torque, self-centering, Low-medium surface pressure, machining tolerance shaft H8, hub H8; socket head Locking screw DIN912-12.9
 
KLD-15 Interchange with BEA BK15, Challenge 15,Chiaravalli RCK15,CONEX  EP, Fenlock FLK134,KBS15 ,MAV 3061,Ringspann RLK134,SATI KLBB,TOLLOK TLK134,  FX52,DRIVELOCK15
 
 
Ubet Locking Bushes KLD-16
Medium torque, Reduced length, Medium self-centering, High surface pressure, machining tolerance shaft H8, hub H8; socket head Locking screw DIN912-12.9
 
 KLD-16 Interchange with BONFIX CCE4900,Challenge 16,CONEX  L,KTR225,KBS52,SATI KLHH, FX120
 
 
Ubet Ball Bearing Adapter Sleeve KLD-17
Low torque, Short Length, Not self-centering, Low surface pressure, machining tolerance shaft H8, hub H8 
 KLD-17 Interchange with BEA BK25, Challenge 17, KBS51, SATI KLFC, FX80
 
Ubet Bearing Adapter Sleeve  KLD-17.1
Low-medium torque, self-centering, low surface pressure, machining tolerance shaft H8, hub H8
 
KLD-17.1 Interchange with Z19B, BEA BK26,Challenge 21,Chiaravalli RCK55, Fenlock FLK250,KTR125,KBS55, POGGI CAL-L,Ringspann RLK250,Ringblok 1500, SATI KLFF,TOLLOK TLK250
 
Ubet Shaft Clamping Collar KLD-18
Low-medium torque, Short Length, self-centering, low surface pressure, machining tolerance shaft H8, hub H8, socket head Locking screw DIN912-12.9
This clamping set is self-centering and suitable for extremely small shaft diameters.     It transfers average to large torques
 
KLD-18   Interchange with BEA BK61,Chiaravalli RCK61,7002 ECOLOC ,GERWAH PSV2061,KTR105,KBS61,MAV 7903,SATI KLSS, Walther CHINAMFG MLC 5050, FX350,OKBS61,DRIVELOCK61
 
Ubet Clamping Device KLD-19
very high torque, self-centering, medium surface pressure, no axial hub movement, machining tolerance shaft H8, hub H8,  socket head Locking screw DIN912-12.9
This clamping set is self-centering with excellent concentricity. The extremely small outer diameter is space-saving and suitable for small wheel diameters. The spacer ring between the outer flange and the hub maintains the fitting position in the axial direction to enable exact positioning without a shaft collar.
 
KLD-19 Interchange with Z12A,BIKON 1012,BEA BK11,BONFIX CCE9500,Challenge 19,Chiaravalli RCK11,CONEX  F,7005 ECOLOC,Fenlock FLK400,GERWAH PSV2005,ITALBLOCK CN911,KTR400,KINLOK LOK40,KBS11,MAV 4061,POGGI CAL-F,RFN7015,Ringspann RLK400,Ringblok 1800,SIT 4,SATI KLEE,TOLLOK TLK400,Tsubaki AD,TAS3012,V-Blok VK112,Walther CHINAMFG MLC 4000/MLC 7000,Fenner Drive B-Loc B112,LoveJoy SLD2600, FX60,OKBS11,DRIVELOCK11
 
Locking Device KLD-33 interchange with Z4, RFN7014

Locking Device KLD-34 interchange with  Z5,BIKON 1015.0/1015.1, 7009 ECOLOC,Fenlock ,GERWAH PSV2009, KTR401,MAV 1008,RFN7015.0,Ringspann RLK401,Ringblok 1810,TOLLOK TLK451,TAS3015.0/3015.1,
 
Keyless Locking Device also call as below
1.     Welle-Nabe-Verbindungen;
2.     Wellenspannsaetze,
3.     Spannsaetze, 
4.     Taper Spannbuchsen,
5.     Taper Lock, 
6.     Keyless Locking Device,
7.     Keyless Locking  Assembly,
8.     Keyless Shaft Locking Device,
9.     Keyless Shaft Hub Locking Device,
10.  Keyless Bushings,
11.  Keyless Shaft Hub Connection,
12.  Clamping Sleeve,
13.  Clamping Element,
14.  Clamping Collar,
15.  Clamping Bush,
16.  Clamping Devices,
17.  Clamping Set,
18.  Clamping Power Lock,
19.  Cone Clamping Element,
20.  Shaft Clamping,
21.  Shaft Fixing,
22.  Shaft Fixing Cone Clamping Element, 
23.  Conical clamping rings, 
24.  Shaft Lock Clamping Element,
25.  Shaft Clamping Element,
26.  Shaft Clamping Collar,
27.  Shaft Locking Device,
28.  Shaft Hub Connection,
29.  Shaft Hub Locking Device,
30.  Shaft Hub Locking Assembly,
31.  Shaft Lock,
32.  Silted Clamping Element,
33.  Shaftlock Clamping Element,
34.  Locking Assembly,
35.  Locking Bushes,
36.  Locking Rings,
37.  Rigid Shaft Coupling,
38.  Rigid Shaft Coupler,
39.  Rigid Ring Block,
40.  Ring Shaft Lock, 
41.  Ringblock Locking Assemblies,
42.  CHINAMFG Connection,
43.  Zinc Plated Locking Devices, 
44.  Nickel Plated Locking Assembly,
45.  Mechanical Locking Device, 
46.  Mechanical shaft lock,
47.  Schrumpfscheibe,
48.   External Locking Assembly,
49.  Narrow Hub Connection for Sprockets,
50.  Shrink Disc, 
51.  Brake Disc, 
52.  Shrink Disk,
53.  External Locking Assembly Light Duty, 
54.  Shrink Discs Standard Duty, 
55.  Shrink Disks Heavy Duty, 
56.  Smart-Lock Schrumpfscheibe, 
57.  Smart-Lock Shrink Disc, 
58.  Bearing Adapter Sleeve, 
59.  Lock Nut,
60.  POWER NUT, 
61.  POWER LINK, 
62.  Shaft Self-Lock Ring Nut, 
63.  Nickel Plated Locking Devices,  
64.  Zinc Plated Locking devices, 
65.  Stainless Steel Locking Devices. /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard or Nonstandard: Standard
Feature: Flame-Retardant, Anti-Static, Oil-Resistant, Corrosion-Resistant, Heat-Resistant, Alkali-Resistant, Skid-Resistance, Wear-Resistant, Acid-Resistant, High Temperature-Resistance
Application: Textile Machinery, Garment Machinery, Packaging Machinery, Motorcycle, Food Machinery, Mining Equipment, Agricultural Machinery
Samples:
US$ 3/Piece
1 Piece(Min.Order)

|

Order Sample

Normally sample order can be ready in 15-20 days
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

taper bush

Are there any online calculators for determining the required taper bush size?

Yes, there are online calculators available that can help in determining the required taper bush size for specific applications. These calculators utilize various input parameters such as shaft diameter, hub diameter, torque, speed, and other relevant factors to provide recommendations on the appropriate taper bush size. Here are some sources where you can find online calculators for determining the required taper bush size:

  • Manufacturer Websites: Many taper bush manufacturers provide online calculators on their websites to assist customers in selecting the correct taper bush size. These calculators are often based on the manufacturer’s specific product range and include fields for inputting the necessary parameters. By entering the required information, such as shaft and hub dimensions, torque, and speed, the calculator can generate recommendations on the suitable taper bush size.
  • Engineering and Mechanical Websites: Several engineering and mechanical websites offer online calculators and tools that cover a wide range of mechanical components, including taper bushes. These calculators are typically designed to provide general recommendations and may not be specific to a particular manufacturer’s product range. They often require input parameters such as shaft diameter, hub diameter, and other relevant dimensions to calculate the appropriate taper bush size.
  • Mobile Applications: Some mobile applications cater to mechanical engineering and power transmission calculations. These apps may include features for determining the required taper bush size based on input parameters such as shaft diameter, hub diameter, torque, and speed. They can be convenient for on-the-go calculations and are often available for both Android and iOS devices.

When using online calculators for determining the required taper bush size, it is important to ensure that the input parameters are accurate and representative of the specific application requirements. The calculated results should serve as a starting point for selecting the appropriate taper bush size, and it is advisable to cross-reference the recommendations with manufacturer catalogs or consult with technical experts to verify the suitability of the chosen size.

Additionally, keep in mind that while online calculators can be helpful tools, they may not account for all the nuances and specific factors of your application. It is still recommended to consult with taper bush manufacturers, suppliers, or engineering professionals to validate the calculated size and ensure a proper fit for your specific application.

By utilizing online calculators as a guide, you can simplify the process of determining the required taper bush size and make informed decisions when selecting the appropriate component for your application.

taper bush

Are there online forums discussing the proper maintenance of taper bushes?

Yes, there are online forums where you can find discussions and information about the proper maintenance of taper bushes. These forums serve as platforms for professionals, enthusiasts, and individuals with expertise in mechanical engineering, power transmission, and machinery maintenance to share knowledge and discuss various topics related to taper bushes and their maintenance. Here are some examples of online forums where you can find discussions on taper bush maintenance:

  • Mechanical Engineering Forums: Online forums dedicated to mechanical engineering often have sections or threads where users discuss topics related to machinery maintenance. These forums provide a platform for professionals and enthusiasts to exchange information and share experiences regarding taper bushes and their proper maintenance. Participating in these discussions can provide valuable insights, tips, and best practices from a community of experts.
  • Power Transmission and Machinery Maintenance Forums: There are online forums specifically focused on power transmission systems, machinery maintenance, and related topics. These forums cover a wide range of subjects, including taper bushes and their maintenance. Users can ask questions, seek advice, and share their experiences regarding the proper maintenance procedures, troubleshooting, lubrication, or replacement of taper bushes in different machinery applications.
  • Industry-Specific Forums: Depending on the industry you are interested in, there may be online forums or communities that cater to specific sectors such as automotive, manufacturing, or construction. These industry-specific forums often have sections or discussions related to machinery maintenance, where taper bushes may be a topic of interest. Engaging in these forums can allow you to connect with professionals from your specific industry and gain insights into taper bush maintenance practices relevant to your field.
  • Social Media Groups and Pages: Social media platforms like Facebook, LinkedIn, or Reddit host various groups, pages, or communities focused on engineering, mechanical maintenance, or specific industries. Joining relevant groups or following pages dedicated to machinery maintenance can provide access to discussions, articles, and resources related to taper bushes and their maintenance. These platforms also allow you to connect with industry professionals and enthusiasts who can share their knowledge and experiences.

When engaging in online forums, it is important to review the forum guidelines, follow proper etiquette, and respect the rules of each community. Be mindful of the accuracy and reliability of the information shared, and consider cross-referencing multiple sources to validate the advice or recommendations provided.

By exploring these online forums and actively participating in discussions, you can find valuable information, tips, and insights on the proper maintenance of taper bushes, enhancing your understanding and proficiency in taper bush maintenance practices.

taper bush

What is a taper bush, and how does it work in mechanical applications?

A taper bush, also known as a taper lock bushing, is a mechanical component used to secure rotating shafts or hubs to mating equipment, such as pulleys, sprockets, or gears. It provides a reliable and secure connection that can withstand high torque and axial loads. Here’s how a taper bush works in mechanical applications:

A taper bush consists of a tapered sleeve with an external taper and a corresponding tapered bore. The external taper is designed to match the taper of the mating component, while the tapered bore fits onto the shaft or hub. The taper of the bush and the mating component create a tight interference fit when assembled.

The installation process involves sliding the taper bush onto the shaft or hub and then tightening a set of screws or bolts. As the screws or bolts are tightened, they exert radial pressure on the taper bush, causing it to expand and grip the mating component tightly. This creates a frictional connection between the taper bush, the shaft or hub, and the mating component, effectively locking them together.

The advantages of using a taper bush in mechanical applications include:

  • Easy Installation: Taper bushings are relatively simple to install. They eliminate the need for complex machining or keyways on the shaft or hub, as the interference fit provides the necessary grip.
  • Secure Connection: The taper lock mechanism ensures a secure and backlash-free connection between the shaft or hub and the mating component. It can withstand high torque and axial loads without slipping or loosening during operation.
  • Accommodation of Different Shaft Sizes: Taper bushings are available in various sizes and tapers to accommodate different shaft diameters and mating components. This versatility allows for flexibility and interchangeability in mechanical designs.
  • Easy Removal and Replacement: In case of maintenance or replacement needs, taper bushings can be easily removed by loosening the set screws or bolts. This facilitates quick disassembly and reassembly without causing damage to the shaft or hub.
  • Reduced Downtime: The ease of installation and removal, combined with the secure connection provided by taper bushings, helps minimize downtime during equipment maintenance or component replacement.

Taper bushings are commonly used in a wide range of mechanical applications, including power transmission systems, conveyor systems, industrial equipment, and automotive applications. They offer a reliable and cost-effective method for connecting rotating shafts or hubs to mating components, ensuring efficient power transmission and reliable operation.

When using taper bushings, it’s important to follow the manufacturer’s guidelines for installation and tightening torque to ensure proper functionality and avoid any potential issues.
China high quality Friction Locking Bushes Tlk132, Cce4100, Drivelock13, Rck13, Bk13, Klaa, Ktr203, Kbs13   bushing press		China high quality Friction Locking Bushes Tlk132, Cce4100, Drivelock13, Rck13, Bk13, Klaa, Ktr203, Kbs13   bushing press
editor by CX 2024-01-12